Determining the surface-to-bulk progression in the normal-state electronic structure of Sr(2)RuO(4) by angle-resolved photoemission and density functional theory.

نویسندگان

  • C N Veenstra
  • Z-H Zhu
  • B Ludbrook
  • M Capsoni
  • G Levy
  • A Nicolaou
  • J A Rosen
  • R Comin
  • S Kittaka
  • Y Maeno
  • I S Elfimov
  • A Damascelli
چکیده

We revisit the normal-state electronic structure of Sr(2)RuO(4) by angle-resolved photoemission spectroscopy with improved data quality, as well as ab initio band structure calculations in the local-density approximation with the inclusion of spin-orbit coupling. We find that the current model of a single surface layer (√2×√2)R45° reconstruction does not explain all detected features. The observed depth-dependent signal degradation, together with the close quantitative agreement with the slab calculations based on the surface crystal structure as determined by low-energy electron diffraction, reveal that-at a minimum-the subsurface layer also undergoes a similar although weaker reconstruction. This model accounts for all features-a key step in understanding the electronic structure-and indicates a surface-to-bulk progression of the electronic states driven by structural instabilities. Finally, we find no evidence for other phases stemming from either topological bulk properties or, alternatively, the interplay between spin-orbit coupling and the broken symmetry of the surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برهمکنش الکترون - فونون در ابررساناهای دمای بالا

  We explore the important role of the strong electron-phonon interaction in high temperature superconductivity through the study of the results of some important experiments, such as inelastic neutron and X-ray scattering, angle resolved photoemission spectroscopy, and isotope effects. We also present our computational results of the eigenvalues and eigenvectors of the Ag Raman modes, and the ...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

Orbital dependence of the fermi liquid state in Sr2RuO4.

We have used angle-resolved photoemission spectroscopy to determine the bulk electronic structure of Sr(2)RuO(4) above and below the Fermi liquid crossover near 25 K. Our measurements indicate that the properties of the system are highly orbital dependent. The quasi-2D gamma band displays Fermi liquid behavior while the remaining low energy bands show exotic properties consistent with quasi-1D ...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

HIGH PRESSURE BEHAVIOR OF KCl: STRUCTURAL AND ELECTRONIC PROPERTIES

The high pressure behavior of the structural and electronic properties of KC1 is studied with use of the density functional pseudopotential method within local-density approximation. Atzero pressure, the rocksalt phase is found to be lower in energy than CsCl structure. However, we predict a phase transition into CsCI structure at a pressure of about 1.5 GPa. The calculated ground state pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 110 9  شماره 

صفحات  -

تاریخ انتشار 2013